IEC 61850 PI1S-10 Software Stack Application Note

How to Update from PIS-10 Version 1 to Version 2

Document 500-0034 v.1.01

Introduction

The PIS-10 IEC 61850 V2 software library includes edition 2 functionality and some minor changes to the
API function calls and the callbacks generated by the PI1S-10 software library. This document will guide you
through each change in the APl and how to update your existing V1 code to V2 and implement the new
functions for V2. The Main API functions calls have not been changed, the majority of changes are based
around the IEC61850 Controls functionality.

Please refer to our navigable online API User Documentation http://api.systemcorp.com.au for more information
on other API functions and data structures.

IEC61850 Create(...)

The function call to 1Ec61850 _create has not changed from V1 to V2 but the 1£C61850 Parameters structure
that is passed into the create function has been modified. These changes are documented bellow

IEC61850 Ed1l Ed2 Flag:

The most important change is the new variable enum I£C61850 Ed1 Ed2 Flag Ed1_Ed2_Flag;
This variable in the structure allows you to set the behaviour of the stack as 1Ec61850_Editionl or
IEC61850_Edition2.

Example:
tServerParam.Edl_Ed2_Flag = IEC61850 Edition2; // set the PIS-10 to Edition2

uiClientMaxAssociations:

For client applications the variable uiclientMaxConnections has been removed and its functionality has been
merged into uiMaxAssociations. This means that the client and server functionality is now consistent when
setting the maximum associations the PIS-10 will allow.

Example:
tClientParam—witlientMaxConnections—=MaxAssocValy//V1 code on client
The above code should be replaced with:

tClientParam.uiMaxAssociations = MaxAssocVal; //V2 code to set max associations on client

uiMMSTimeout:

For client applications it defines the amount of time the PIS-10 will wait before timing out on an MMS
message.

Example:
tClientParam. uiMMSTimeout = 1500; //V2 code to set the MMS timeout to 1.5 seconds

http://api.systemcorp.com.au/

ptReadMultipleCallback:

IEC61850_ReadMultipleCallback is a new optional callback for the server if this callback is set

IEC61850 _ReadMultipleCallback Will be used in place of the 1EC61850 ReadCal Lback. The functionality of this
new callback is explained later on in this document.

Example:
tServerParam.ptReadMultipleCallback = ReadMultipleCallbackHandler; //Assign Multiple Read Callback

ptQuestionableCallback:

ptQuestionableCallback is a new optional callback for the server or client. The callback is used to notify the

application when a data point is questionable due to a GOOSE data packet not being received before the
TTL in the previously received GOOSE packet.

Example:
tServerParam.ptQuestionableCallback = QuestionableCallbackHandler; // Assign Questionable Callback

ptOprTestCallback:

ptOprTestCallback is a new mandatory callback for the server. This callback is called before the

IEC61850_ControlOperateCallback callback and it allows user application to check the status of the
hardware if it is in a controllable state.

Example:
tServerParam.ptOprTestCallback = OperativeTestCallbackHandler;// Assign Operative Test Callback

ptCmdTermCallback:

ptCmdTermCal Lback is @ new optional callback for the client. This callback is called when a command
termination message is received.

Example:
tClientParam.ptCmdTermCallback = CommandTerminationCallback; // Assign CMD termination Callback

ptErrorCallback:

ptErrorcCal lback is a new optional callback for the client. This callback is called when a “LastApplError”
message is received.

Example:
tClientParam.ptErrorCallback = ErrorCallbackHandler; // Assign Error Callback Function

ptConnectionStatusCallback:

ptConnectionStatusCallbackis a new optional callback for the client. This callback is called when a remote
servers connection status changes

Example:
tClientParam.ptConnectionStatusCallback = ConnectionStatusCallback;// Assign Connection Status
Callback Function

ptTimestampCallback:

ptTimestampCallback is a new optional callback for the server and client. This callback is called when a
timestamp is needed by the IEC61850 stack

Example:
tClientParam.ptTimestampCal lback= TimestampCallbackHandler; // Assign Timestamp Callback Function

IEC61850 ControlSelectCallback(...)

The IEC61850 ControlSelectCallback has been slightly modified instead of having separate values for the
isyncroCheck and the iInterlockCheck they have been packaged inside a new structure called
ptSelectParameters Of type struct IEC61850_CommandParameters. This ptSelectParameters structure will
contain iSyncroCheck and iInterlockCheck but also bTestMode so you know when a control is in test mode.

Example:
enum eCommandAddCause SelectCallbackHandler(struct IEC61850 DataAttributeID * ptControlID, struct
IEC618560_DataAttributeData * ptSelectValue, struct IEC61850_CommandParameters* ptSelectParameters)

{
enum eCommandAddCause eErrorCode = IEC61850 COMMAND _ERROR_NONE;
/*Do Select Code Here*/
return eErrorCode;

IEC61850 ControlOperateCallback(...)

The IEC61856 ControlOperateCallback has been slightly modified instead of having separate values for the
isyncroCheck and the iInterlockCheck they have been packaged inside a new structure called
ptOperateParameters Of type struct IEC61850_CommandParameters. This ptOperateParameters structure will
contain isyncroCheck and iInterlockCheck but also bTestMode SO you know when a control is in test mode.

Example:
enum eCommandAddCause OperateCallbackHandler(struct IEC61850 DataAttributeID * ptControlID, struct
IEC61850 DataAttributeData * ptOperateValue, struct IEC61850_CommandParameters* ptOperateParameters)

{
enum eCommandAddCause eErrorCode = IEC61850 COMMAND_ERROR_NONE ;
/*Do Operate Code Here*/
return eErrorCode;

IEC61850 ControlCancelCallback(...)

The IEC61850 ControlCancelCallback has been slightly modified to include a new structure called
ptCancelParameters Of type struct IEC61850_CommandParameters. This ptCancelParameters structure will
contain isyncroCheck, iInterlockCheck and bTestMode.

Example:
enum eCommandAddCause CancelCallbackHandler(struct IEC61850 DataAttributeID * ptControlID, struct
IEC61850_CommandParameters* ptCancelParameters)
{
enum eCommandAddCause eErrorCode = IEC61850 COMMAND_ERROR_NONE ;
/*Do Cancel Code Here*/
return eErrorCode;

IEC61850 ControlOperativeTestCallback(...)

The IEC61850 ControlOperativeTestCallback is a new Mandatory callback that has been implemented as
per the IEC61850 standard. The purpose of this callback is to test the hardware state to be sure it is ready
to do an Operate. If the hardware is not in a ready state an error value should be returned.

Example:
enum eCommandAddCause OperativeTestCallbackHandler(void * ptUserData, struct
IEC61850_DataAttributeID* ptControlID, struct IEC61850_CommandParameters* ptOperativeTestParameters)
{

enum eCommandAddCause eErrorCode = IEC61850 COMMAND _ERROR_NONE;

/*Do Operative Test Code Here*/

return eErrorCode;

}

IEC61850 ControlCommandTerminationCallback(...)

The IEC61856_ControlCommandTerminationCallback is a new optional callback that will be called when a

Command Termination message is received by the client. This can be used to know if a control was
successful or not.

Example:
enum eCommandAddCause CommandTerminationCallback(void * ptUserData, struct IEC618560 DataAttributeID
* ptControlID, struct IEC61850 DataAttributeData * ptCmdTermValue)
{
enum eCommandAddCause eErrorCode = IEC61850 COMMAND_ERROR_NONE ;
/*Do Command Termination Code Here*/
return eErrorCode;

}
IEC61850 ErrorCallback(...)

The IEC61850 IEC61850 ErrorcCallback is a new optional callback that will be called when a “LastApplError”
message is received. The pterrorParamtrs Of type struct IEC61850 ErrorParameters contains the necessary

information about the error that has been received including the error value and string that describes the
error.

Example:
enum eCommandAddCause ErrorCallbackHandler(void * ptUserData, struct IEC61850 DataAttributeID *
ptDataAttributeID, struct IEC61850_ErrorParameters * ptErrorParamtrs)
{
enum eCommandAddCause eErrorCode = IEC61850 COMMAND_ERROR_NONE ;
/*Do Error Processing Code Here*/
return eErrorCode;

}
IEC61850 DataPointQuestionableCallback(...)

The IEC61850 DataPointQuestionableCallback is a new optional callback for the server or client. The
callback is used to notify the application when a data point is questionable due to a GOOSE data packet
not being received before the TTL in the previously received GOOSE packet.

Example:

void QuestionableCallbackHandler(void * ptUserData, struct IEC61850 DataAttributeID *
ptDataAttributeID)

{
}

/*Do Questionable Data Point Processing Code Here*/

IEC61850 ReadMultipleCallback(...)

The IEC61850 ReadMultipleCallback is a new optional callback for the server or client. The callback is
called when a structure is read by a client. When a structure is read by a client then this callback will
provide all data points inside the structure that have private IDs as an array of data points and array of
private IDs along with a count that contains the number of points inside the arrays. The arrays are
symmetrical this means that the data value in ptReturnedvalue at element 0 will have a matching private ID
in ptDataAttributeID at element O.

If this callback is set then 1£c61850_Readcal Lback Will NOT be called 1£c61850 ReadMultipleCallback will be
called instead.

Example:
enum IEC61850 CallbackReturnServiceErrorCodes ReadMultipleCallbackHandler(void * ptUserData, struct
IEC61850 DataAttributeID * ptDataAttributeID, struct IEC61850_DataAttributeData * ptReturnedValue,
int iCount)
{

enum IEC61850_ CallbackReturnServiceErrorCodes eErrorCode = IEC61850 CB_ERROR_NONE;

/*Do Multiple Read Data Point Code Here*/

return eErrorCode;

}

IEC61850 ConnectionStatusCallback (...)

The IEC618560_ConnectionStatusCallback is a new optional callback for the client. The callback is called when
the connected state of a remote server has changed. A remote server can be in 5 possible states that are
defined by enum IEC61850 ServerStatusVal.

Example:
void ConnectionStatusCallback(struct IEC61850_ServerStatusArray inConnectedServersArray)

{
Integer32 i =0,

for(i =0; i < inConnectedServersArray.ServerStatusArraySize; i++)

{
struct IEC61850_ServerStatus * ServerStatus = &(inConnectedServersArray.ServerStatusArray[i]);
if(ServerStatus != NULL)
{
switch(ServerStatus->isConnected)
{
/*Do Connection Status Callback Code Here*/
}
}
}

}

IEC61850 TimeStampCallback (...)

The IEC61850 TimeStampCallback is a new optional callback for the server and client. The callback is called
when the IEC61850 stack needs to generate a timestamp. If the callback is set then the IEC61850 stack will
call this function with a pointer to a timestamp struct IEC61850_TimeStamp the user code can then populate
the structure with the current time and this time will be used. If the callback is not set then the IEC61850
stack will get the current time directly from the operating system.

Example:
void TimeStampCallback (struct IEC61850 TimeStamp *CurrentTime)
{

}

/*Populate Timestamp structure Code Here*/

If you need assistance

Please refer to our navigable online API User Documentation http://api.systemcorp.com.au for more information
on other API functions and data structures.

All technical questions must be sent to our support email address: support@systemcorp.com.au
Upon receiving your question(s), it will get logged in our support system and you will receive and
acknowledgement which will include a ticket ID. Please refer to your ticket ID when you are following up
about enquiry.

http://api.systemcorp.com.au/
mailto:support@systemcorp.com.au

